CEVCLUS: Constrained evidential clustering of proximity data
نویسندگان
چکیده
We present an improved relational clustering method integrating prior information. This new algorithm, entitled CEVCLUS, is based on two concepts: evidential clustering and constraint-based clustering. Evidential clustering uses the DempsterShafer theory to assign a mass function to each object. It provides a credal partition, which subsumes the notions of crisp, fuzzy and possibilistic partitions. Constraint-based clustering consists in taking advantage of prior information. Such background knowledge is integrated as an additional term in the cost function. Experiments conducted on synthetic and real data demonstrate the interest of the method, even for unbalanced datasets or non-spherical classes.
منابع مشابه
CEVCLUS: evidential clustering with instance-level constraints for relational data
Recent advances in clustering consider incorporating background knowledge in the partitioning algorithm, using, e.g., pairwise constraints between objects. As a matter of fact, prior information, when available, often makes it possible to better retrieve meaningful clusters in data. Here, this approach is investigated in the framework of belief functions, which allows us to handle the imprecisi...
متن کاملRECM: Relational evidential c-means algorithm
A new clustering algorithm for proximity data, called RECM (Relational evidential c-means) is presented. This algorithm generates a credal partition, a new clustering structure based on the theory of belief functions, which extends the existing concepts of hard, fuzzy and possibilistic partitions. Two algorithms, EVCLUS (Evidential Clustering) and ECM (Evidential c-Means) were previously availa...
متن کاملRepeated Record Ordering for Constrained Size Clustering
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...
متن کاملConstrained Spectral Clustering under a Local Proximity Structure Assumption
This work focuses on incorporating pairwise constraints into a spectral clustering algorithm. A new constrained spectral clustering method is proposed, as well as an active constraint acquisition technique and a heuristic for parameter selection. We demonstrate that our constrained spectral clustering method, CSC, works well when the data exhibits what we term local proximity structure. Empiric...
متن کاملECMdd: Evidential c-medoids clustering with multiple prototypes
In this work, a new prototype-based clustering method named Evidential C-Medoids (ECMdd), which belongs to the family of medoid-based clustering for proximity data, is proposed as an extension of Fuzzy C-Medoids (FCMdd) on the theoretical framework of belief functions. In the application of FCMdd and original ECMdd, a single medoid (prototype), which is supposed to belong to the object set, is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011